
Automated Testing Techniques:
Lessons Learned from Prior Automated Testing

October 19, 1999 (Version 2.0)

First Deliverable (FY 1999, Quarter 2) of
Automated Testing Techniques

Jet Propulsion Lab Center Initiative UPN 323-08-5N
Project Officer: Siamak Yassini

Prepared by:
 Martin S. Feather, Richard G. Covington

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena CA 91109 USA

email: Martin.S.Feather@jpl.nasa.gov, Richard.Covington@jpl.nasa.gov
tel: +1 818 354 1194, +1 818 354 6586

EXECUTIVE OVERVIEW
This document reports on lessons learned from an earlier
investigation of Automated Testing Techniques applied to a
mission-critical software component that generates
sequences targeted for execution by a highly autonomous
spacecraft. Verification and validation of such a class of
software presents challenges that are expected to be met by
new testing techniques that rely on testing automation. The
purpose of the supporting RTOP is to identify, investigate,
and evaluate new testing techniques that are automated and
reusable, and that can be easily and quickly adapted to the
targeted class of software components.

The document is organized as follows. First, background
of the investigation and the testing premise is described.
Then, the testing process is discussed, including an
identification of the major testing challenges. Finally,
results of the testing, lessons learned, and concluding
observations are presented.

1 BACKGROUND AND TESTING PREMISE
The software component chosen as the target of the earlier
investigation is the AI planner component of the Remote
Agent Experiment (RAX) for the Deep Space 1 (DS-1)
spacecraft. The planner takes as input high-level goals, and
compiles the goals into lower-level sequences that satisfy
the goals while adhering to certain operational restrictions.

The resulting sequences will be passed to the spacecraft's
intelligent and highly autonomous executive, where they
are executed to control major hardware components in
achieving the associated goals.

The investigation of automated testing techniques for this
software component was focused on the software design
team's need for independent verification and validation of
the output sequences. Specifically, the goal of the testing
was to show that the sequences (1) do not violate
operational constraints expressed in the form of spacecraft
flight rules, and (2) satisfy the original goals.

It was further assumed that the testing techniques
developed would generalize to some appropriate wider
class of software components, namely, mission-critical
software components with constraints expressible as logical
predicates on their states of operation.

2 THE TESTING PROCESS AND CHALLENGES
The characteristics of the investigated software, its
development environment, and its target execution
environment all place special demands on and pose new
challenges to existing testing strategies. First, the software
in question produces sequences which are highly mission
critical, due to the increased level of autonomy of the
spacecraft's intelligent executive. Second, again due to the
role of autonomy, the sequences produced operate under

VERSION 2.0 – not authorized for external release

2

fewer constraints than traditional sequences, which
translates into a larger number of test cases to consider.
Finally, the degree of detail desired for each test case,
including traceability and justification for the results of the
sequence checking, is another dimension that expands the
volume of material to be checked. Since the developers
depend on the results from early implementation tests as
feedback to the ongoing development, short turnaround
time for test evaluation is also a critical need. Below is a
discussion of the challenges and the strategies expected to
meet them in more detail.

New Testing Challenge (1): Mission-Critical
Autonomous Software
Cost, performance and functionality concerns are driving a
trend towards the use of self-sufficient autonomous
spacecraft systems that depend less and less on the
decisions and inputs of a human controller. They are
intended to operate over an extended period, without
human intervention or oversight. Since these systems are
intended to substitute for human-controlled mechanisms
over significant time intervals, it is critical that they
function correctly.

Expectation is high that such systems will work well for
DS-1, and therefore similar components are planned for use
on multiple future spacecraft. As a result, the investigation
of the testing technique should include an effort to
generalize to a broader class of sequence generators for
autonomous spacecraft. Testing should show not only that
the component functions correctly for a specific mission,
but also that the component will behave correctly in
general.

DS-1 example: the DS-1 Remote Agent Experiment will be
the first artificial intelligence-based autonomy architecture
to reside in the flight processor of a spacecraft and control
it for 6 days without ground intervention.

New Testing Challenge (2): Number of Test Cases
Advanced software components also exhibit a much wider
range of behaviors than the equivalent mechanisms of more
traditional software components. In the environment of
traditional sequence generation and testing, the sequence is
intended (1) to operate during a relatively brief time period,
or (2) to control only one instrument, or both. In the
current highly autonomous environment, these restrictions
relax or disappear, resulting in a much larger test case
space. Developers then face the need to perform more tests
to provide adequate coverage of the larger behavior space.

DS-1 Example: The DS-1 RAX AI planner exemplifies this
testing challenge since it must be crafted to work over a
wide range of inputs. This input space is the cross product
of the state of the spacecraft at the time that planning is
initiated, the set of constraints that correspond to flight
rules, and the set of goals that describe the objectives the
generated plan is to achieve. In contrast, traditional

command sequences generate a much smaller behavioral
state space due to the restrictions mentioned above.

New Testing Challenge (3): Size of Test Cases
The behaviors of advanced software components can be
rich in detail, and are typically structured for processing by
other advanced software components. The individual tests
themselves can involve considerable detail and become
challenging to set up, to run, and to evaluate for
correctness.

DS-1 Example: The RAX planner yields a plan as a result
of a single test run. A typical plan is a detailed and
voluminous object, ranging from 1,000 to 5,000 lines long
when pretty-printed by Lisp. Furthermore, each such plan
must satisfy every one of hundreds of flight rules, and the
information to ascertain whether or not a plan satisfies a
rule is dispersed through the plan.

New testing opportunities
General strategies such as automation are crucial towards
achieving the levels of test case coverage needed to meet
these challenges. Fortuitously, the nature of advanced
software components facilitates the introduction of
automation into testing activities. In particular, such
components take as input, and yield as output, customized
machine-manipulable representations (i.e., in some formal
notation other than simply natural language). These
machine-manipulable representations are the data on which
the automation operates. In contrast, more traditional
software components have little between the extremes of
requirements expressed in natural language, and the
programming language statements in which they are coded.

DS-1 example: the RAX planner takes as input flight rules
expressed in a formal language (the language of
"compatibilities"). Statements in this language take the
form of temporal constraints between pairs of actions.
Similarly, the RAX planner's output, a plan, is also
expressed in a formal language (parameterized actions
located on timelines). Both these languages are planner-
specific, formal, rigorous notations.

3 TESTING RESULTS
In the earlier investigation, automation was successfully
applied in the evaluation of test cases for the DS-1 RAX
planner. The planner experts developed test cases in the
form of goals. The planner was run on each of these test
cases to yield a plan or sequence (except for those
occasions when the planner failed to produce a plan within
the allotted time limit). Automation was introduced by
coding or scripting the existing test support software to
verify that a plan adheres to all operational constraints (i.e.,
that it doesn't do anything that it shouldn't), and indirectly
that the plan satisfies its original goals (i.e., that it does
what it is supposed to). Each of the hundreds of flight rules
for the spacecraft is represented in the testing environment
by a constraint. The set of constraints is basically "static"

3

and applies to the checking of any generic plan. But since
each plan is generated in accordance with its own unique
set of goals, the goals indirectly augment the flight rules set
for the specific test case. So, the process of checking the
generic flight rules also indirectly checks that the original
goals are achievable by the resulting plan. In more formal
testing terminology, the automated or scripted constraint
checker is called a "test oracle", which is a software
application that can ascertain whether the output of a test
run is correct

Automation was taken one step further – the test oracles
themselves were automatically generated from the set of
constraints (flight rules) input to the planner. The net result
was a plan checking system that could check the thousands
of plans generated in the course of DS-1 testing, and the
test system itself could be automatically regenerated
whenever the set of planner constraints evolved.

4 LESSONS LEARNED
The experience of introducing automation into DS-1 testing
was an overall success. However, retrospective study of the
experience reveals the following as being areas worthy of
further investigation. The RTOP is structured to pursue
these investigations in the following months.

Lesson: Efficiency is not always of paramount
importance
The classic notion of a test oracle is of a system that, given
a test input and a test output, will answer yes or no to the
question "is the output correct for that input". Much
literature on test oracles assumes this simple structure, and
focuses on making them highly efficient. For example, test
oracles are commonly implemented as finite state machines
that recognize only violations to the particular input-output
relationship they were designed to monitor. The advantage
of such implementations is that they scale to huge amounts
of information (very voluminous test logs), have "on-line"
performance (each additional piece of input is checked in
constant time), and consume minimal resources. Such
considerations are particularly important if, say, the test
oracle is intended to be operational software that resides
alongside the running system and monitors that system in
real time as a safety check.

In contrast, the DS-1 experience suggests that less efficient
oracles may often suffice for a testing environment, where
automation may be more important than optimization In
contrast to a real time operations environment, the
resources consumed by oracles during testing is probably
not critical. Likewise, ensuring the fastest possible
execution of test oracles is not strictly necessary, since they
can be permitted to detect a failed test some time after the
test has taken place. Of course, some bounds on run time
are a practical need since the developers are expecting to
use the test results as feedback into the ongoing
development. In the DS-1 case, the test oracles operate
faster than the DS-1 planner, that is, they take less time to

analyze a plan than the planner takes to generate it. This is
not an overly surprising or spectacular result, given that
generating a plan is a challenging search problem (hence
the whole AI sub-domain of planning), whereas checking a
plan once it has been generated is much less complex.

This freedom from the strictest of efficiency concerns
allows the consideration of a wider range of analysis
techniques. The next lesson learned addresses how to make
use of this freedom.

Lesson: Consider the Cost/Benefit of the Testing Code
Automation in testing will yield a net benefit only if the
development costs of that automation do not exceed the
savings obtained from use of the automation.

Our DS-1 experience found the following to be the critical
concerns:

• Availability of the domain experts

• Overall development effort (time and budget)

The former refers to the limited availability of the
spacecraft planner experts. Hence, the development effort
(of the automated generator of automated test oracles) was
structured to make best use of their available time. The
bulk of the development was performed by an analysis
expert who was not a spacecraft planner expert, but who
received guidance and assistance from spacecraft planner
experts on an as-needed basis.

The latter refers to the usual business case considerations,
since project funds paid for the development. Had some
alternative, more cost-effective means been available to
accomplish the same levels of testing assurance, then those
would have been chosen instead.

The freedom from the strict efficiency considerations
should be exploited here. Rather than employ sophisticated
analysis with a correspondingly tortuous input format, the
technique used more mundane analysis whose input format
was highly flexible and general purpose. In particular, it
included a flexible database engine for analysis. The net
result was a smaller gap between project-specific notations
(plans and planner constraints) and analysis notations (data
and database queries), which reduced the overall effort. In
particular, it led to a straightforward representation of plans
by the analysis system. One of the spacecraft planner
experts was able to make use of this analysis representation
directly, in extending the use of the analysis approach.

Lesson: Test cases have significant structure
Another characteristic of the classic test oracle is that their
output is a simple binary value, either “passed” or “failed”.
Much research into test oracles includes this fundamental
assumption. Yet DS-1 plan checking revealed that there
was the need to take into account more of the available
structure of the test cases. Correspondingly, test outputs
became more than simply “passed” or “failed”.

4

A simple example is that when a plan fails a test, the
developers demanded detailed information that traced to
requirements, that identified exactly which part of the test
had failed, and why. A binary "pass" or "fail" was
insufficient.

A subtler example is that of the bounding of DS-1 plans by
a beginning time point and an end time point. Some of the
constraints (flight rules) spanned such boundaries. Thus the
correctness of a plan could depend on the activities before
and/or after the boundaries of that plan. The test oracles
took these considerations into account, and divided the
constraints that the plan was checked against into three
cases:

• constraints that were satisfied regardless of plan
boundaries,

• those that were violated regardless of plan boundaries,
and

• those that were satisfied only for certain assumptions
about activities outside of those boundaries.

Lesson: Automated Translation Between Notations is
Key
There is a recurring need to translate between design
notation and analysis notation. In order to scale, the
translation itself must be automated. Without such
automation, a costly manual step would remain, limiting
the approach to only the most critical core for which such
costs are outweighed by the need for extremely high levels
of assurance.

Such manual steps can only rarely be afforded in a typical
test plan. For this reason, the DS-1 work included the
development of an automatic generator of test oracles. In
actuality, this generator was a translator, from the planner
constraint language to the database query language.

The translator itself was structured as a large procedural
program, which in retrospect is easy to see as a bottleneck
in the overall development process. The program was hard
to maintain even for its creator, not to mention for someone
else to extend or adjust. This suggests the need to pay much
more attention to the construction of inter-notation
translators. Desirable characteristics would include:

• Easily adapted/extended

• Easily understood

• “Obviously” correct

A large procedural program fails all these desires. Two
major alternative styles address this problem:

1. Translation based on declarative rules.

2. Translation structured into small composable units.

In the first, the translation is coded as a sequence of

language-to-language steps in a declarative style. A generic
rule execution mechanism then applies these steps to input,
yielding the output step by step. This approach has been
studied extensively in the program transformation research
community, and commercial tools exist that support such
translation activities (e.g., Reasoning Transformation
Software Architecture by Reasoning, Inc.).

The second approach emphasizes the overall structure of
the translation, encouraging the breakdown of the
translation process into many small reconfigurable units,
organized into a data-flow like architecture. A parallel
RTOP activity is developing a generic mechanism that
supports such a structure.

Translation for purposes of test automation generation
appears amenable to either approach. The desire for
understandability and maintainability favors the second
approach. The next phase of this RTOP will consider these
issues in greater detail.

Lesson: Redundant Rationale Useful for Cross-Checks
The plans generated by the DS-1 planner contain
information beyond a simple list of actions arranged on
timelines. In particular, they contain traceability
information that relates those actions to the constraints that
were taken into account in their planning. One of the
required capabilities for the test oracles was that they check
this information. The planner experts wanted these checks
for the additional level of assurance that they would
provide. Essentially, traceability checking would increase
confidence that the planner was generating correct plans
“for the right reasons”.

In the event, these checks were also useful to the developer
of the test oracle generator, proving effective at finding
mistakes in the oracles themselves (or, equivalently, in the
code that generated the oracles). For example, the plans
contained redundant information that identified for every
activity all the constraints that were considered in
generating the plan for that activity. The test oracle also
had to confirm that the list of constraints that an activity
was checked against matched the plan's own constraint list
for that activity. The test oracle could not overlook a
constraint and still yield a “passed” result.

This "extra information" present in DS-1 plans was
recognized to be a useful form of redundant rationale.
Redundant information is always useful for cross-checking
(especially where the checks are performed automatically,
and hence voluminous amounts of information is not an
impediment). Furthermore, rationale is a particularly
potent form of redundancy. It relates information at
different levels of concern. (E.g., DS-1 rationale relates
what constraints were taken into account with how the
actions were scheduled so as to satisfy those constraints.)

This study highly recommends that such redundant
rationale information be present in system outputs, and that

5

testing encompass the checking of such information.

5 CONCLUSION
This report has presented lessons learned based on an
earlier investigation of Automated Testing Techniques
applied to a mission-critical software component. The main
lessons are as follows:

Mission-critical autonomous software offers a new set of
testing challenges, notably: the need for thorough testing,
handling a large number of test cases, and handling test
cases which themselves are large. It also offers a new set of
testing opportunities, notably the feasibility of automating
significant aspects of testing, stemming from availability of
machine-manipulable notations.

Automatic test-case checking (a.k.a. "test oracles") can
meet some of those new testing challenges. More
surprisingly, maximizing the efficiency of those test oracles
is not necessarily of primary importance.

Automatic generation of the test oracles themselves can be
beneficial, but is itself a challenging activity, one that
warrants further attention.

Testing can make good use of redundancy within the
information being checked. Redundant information
pertaining to rationale - for example, a trace of the
reasoning of why an activity was planned for a given time -
is particularly useful. Checking this redundant rationale
information extends assurance in the correctness of the
system under test (it's doing the right thing and doing it for
the right reasons), and in the correctness of the test oracles
themselves.

ACCOMPANIMENTS
Two papers accompany this deliverable:

1. “V&V of a Spacecraft’s Autonomous Planner
through Extended Automation” – produced prior to
this RTOP, and presented at the NASA Goddard
Software Engineering Laboratory’s 23rd Annual
Software Engineering Workshop, December 1998.
It outlines the successful use of automation in checking
the outputs of DS-1 planner testing.

2. "Automatic Generation of Test Oracles - From Pilot
Studies to Application" - produced as part of this
RTOP, and appearing in Proceedings 4th IEEE
International Conference on Automated Software
Engineering Conference, Oct. 12-15 1999, Cocoa
Beach, Florida. IEEE Computer Society pp 63-72. It
presents some of the lessons learned discussed herein,
and provides more details that substantiate those
lessons.

